Iron-Catalyzed Regio- and Stereoselective Substitution of γ , δ -Epoxy- α , β -unsaturated Esters and Amides with Grignard Reagents

ORGANIC LETTERS 2010 Vol. 12, No. 5 1012-1014

Takeshi Hata, Rie Bannai, Mamoru Otsuki, and Hirokazu Urabe*

Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-59 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan

hurabe@bio.titech.ac.jp

Received January 5, 2010

When γ , δ -epoxy- α , β -unsaturated esters or amides were treated with 2 equiv of Grignard reagents in the presence of 10–24 mol % FeCl₂, regio- and stereoselective substitution of the epoxide moiety with the Grignard reagent occurred to give exclusively δ -hydroxy- γ -alkyl or aryl- α , β -unsaturated esters or amides in good yields.

Diene monoepoxides are useful building blocks in organic synthesis, and their utility has been explored by many research groups.¹ Although their functionalized counterparts, such as γ , δ -epoxy- α , β -unsaturated carboxylic acid derivative **1** in eq 1, are often more useful than simple compounds,²

their reaction with organometallic reagents has not been amply reported, probably because of the poor compatibility of the functional group with metallic reagents.^{3,4} Here we report that iron-catalyzed substitution of these diene monoe-

^{(1) (}a) Olofsson, B.; Somfai, P. In Aziridines and Epoxides in Organic Synthesis; Yudin, A. K., Ed.; Wiley-VCH: Weinheim, 2006; pp 315–347. For substitution of epoxides with Grignard reagents, see: (b) Urabe, H.; Sato, F. In Handbook of Grignard Reactions; Silverman, G. S., Rakita, P. E., Eds.; Marcel Dekker: New York, 1996; pp 577–632.

⁽²⁾ Substitution of functionalized diene monoepoxides with various nucleophiles has been reported. With oxygen or nitrogen nucleophiles: (a) Yu, X.-Q.; Yoshimura, F.; Ito, F.; Sasaki, M.; Hirai, A.; Tanino, K.; Miyashita, M. Angew. Chem., Int. Ed. 2008, 47, 750-754. (b) Miyashita, M.; Mizutani, T.; Tadano, G.; Iwata, Y.; Miyazawa, M.; Tanino, K. Angew. Chem., Int. Ed. 2005, 44, 5094-5097. (c) Fagnou, K.; Lautens, M. Org. Lett. 2000, 2, 2319-2321. (d) Tsuda, T.; Horii, Y.; Nakagawa, Y.; Ishida, T.; Saegusa, T. J. Org. Chem. 1989, 54, 977-979. With active methylene compounds under Pd catalysis (which shows different regioselection to form allyl alcohols rather than homoallyl alcohols): (e) Tsuji, J.; Kataoka, H.; Kobayashi, Y. Tetrahedron Lett. 1981, 22, 2575-2578. (f) Nemoto, H.; Ibaragi, T.; Bando, M.; Kido, M.; Shibuya, M. Tetrahedron Lett. 1999, 40, 1319–1322. With hydride under Pd catalysis: (g) Oshima, M.; Yamazaki, H.; Shimizu, I.; Nisar, M.; Tsuji, J. J. Am. Chem. Soc. 1989, 111, 6280-6287. With electron: (h) Molander, G. A.; Bella, B. E. L.; Hahn, G. J. Org. Chem. 1986, 51, 5259-5264. (i) Yadav, J. S.; Shekharam, T.; Srinivas, D. Tetrahedron Lett. 1992, 33, 7973-7976.

⁽³⁾ With methyl- or ethylaluminum reagents: (a) Miyashita, M.; Hoshino, M.; Yoshikoshi, A. J. Org. Chem. **1991**, 56, 6483–6485. (b) Shanmugam, P.; Miyashita, M. Org. Lett. **2003**, 5, 3265–3268. For application to natural product synthesis, see: (c) Komatsu, K.; Tanino, K.; Miyashita, M. Angew. Chem., Int. Ed. **2004**, 43, 4341–4353. (d) Nakamura, R.; Tanino, K.; Miyashita, M. Org. Lett. **2003**, 5, 3579–3582.

⁽⁴⁾ With organocopper reagents (which shows different regioselection to form allyl alcohols rather than homoallyl alcohols): Hirai, A.; Matsui, A.; Komatsu, K.; Tanino, K.; Miyashita, M. *Chem. Commun.* **2002**, 1970–1971.

⁽⁵⁾ For reviews on iron-promoted organic reactions, see: (a) Correa, A.; Mancheño, O. G.; Bolm, C. *Chem. Soc. Rev.* **2008**, *37*, 1108–1117. (b) Enthaler, S.; Junge, K.; Beller, M. *Angew. Chem., Int. Ed.* **2008**, *47*, 3317– 3321. (c) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. *Chem. Rev.* **2004**, *104*, 6217–6254. For diene, enyne, and diyne cyclizations, see: (d) Michelet, V.; Toullec, P. Y.; Genêt, J.-P. *Angew. Chem.Int. Ed* **2008**, *47*, 4268–4315. For coupling reactions, see: (e) Sherry, B. D.; Fürstner, A. Acc. Chem. Res. **2008**, *41*, 1500–1511. (f) Fürstner, A.; Martin, R. *Chem. Lett.* **2005**, *34*, 624–629.

⁽⁶⁾ For iron-catalyzed or -mediated reactions from our laboratory, see: (a) Okada, S.; Arayama, K.; Murayama, R.; Ishizuka, T.; Hara, K.; Hirone, N.; Hata, T.; Urabe, H. *Angew. Chem., Int. Ed.* **2008**, *47*, 6860–6864. (b) Hata, T.; Hirone, N.; Sujaku, S.; Nakano, K.; Urabe, H. Org. Lett. **2008**, *10*, 5051–5053. (c) Fukuhara, K.; Urabe, H. *Tetrahedron Lett.* **2005**, *46*, 603–606.

poxides with Grignard reagents satisfactorily took place to give homoallyl alcohols as single isomers.^{5,6}

The outcome of the preliminary investigation is shown by eq 1, in which amide **1** was allowed to react with PhMgBr in the presence of iron salts or other metallic catalysts. While a few iron salts proved particularly useful for this reaction (entries 2–5), routine catalysts^{1,2} were found ineffective (entries 6–12).⁷ Considering its cost and simplicity (free from organic ligands), we adopted 10–20 mol % of FeCl₂ as the best catalyst and obtained the desired homoallyl alcohol **2** in 62% isolated yield and as a single isomer (entry 4).⁸

\sim	(1)	PhMgBr (2 e catalyst THF -78 to 0 °C, 4	quiv) (2 	2H Ph (single isomer)	² (1)
entry	catalyst (mol %)	isolated yield (%)	entry	catalyst (mol %)	isolated yield (%)
1	none	0	7	PdCl ₂ (10)	0
2	Fe(acac) ₃ (20)	61	8	Pd(PPh ₃) ₄ (10)	0
3	FeCl ₂ (22)	61	9	NiCl ₂ (10)	0
4	FeCl ₂ (12)	62	10	NiCl ₂ (PPh ₃) ₂ (10	D) (C
5	FeCl ₂ (5)	32	11	MnCl ₂ (20)	0
6	Cul (10)	0	12	CoCl ₂ (20)	0

This reaction is also applicable to ester **3** as shown in eq 2. The stereochemistry of product **5** was unambiguously verified by its derivatization to known lactone 6.9

The high selectivity observed above is valid to various γ, δ -epoxy- α, β -unsaturated carboxylic acid derivatives and Grignard reagents as shown in Table 1, thus affording the desired products as virtually single isomers. Besides ethyl ester 3 and diethylamide 1, t-butyl ester 7 and N,Ndibenzylamide 8 participated in the substitution as well to give 16 and 18 (entries 4 and 7). In addition to aryl delivery (entries 1, 2, 4-7, and 12), alkyl or alkenyl Grignard reagents afforded single homoallyl alcohols in good yields (entries 3, 8, 10, 11, and 13-18). One exception was ethynyl Grignard reagent (entry 9), which gave the coupling product 20 in good yield, but its diastereoselectivity was moderate. While the reactions of entries 1-13 always started with trans-epoxides, cis epoxides 10-12 could be utilized equally well to give the homoally alcohols 25-27 as single isomers (entries 14-16), among which product **26** is a known compound.^{3a} Even trisubstituted epoxides 13 and 14 reacted

Table	1.	Preparation	of	Various	Homoallyl	Alcohols	According
to eqs	1	and 2					

entry	epoxide	Grignard reagent	FeCl ₂ (mol %)	product	yield (%) ^a
		RMgBr			
1 2 3	(3)		12 10 11	R = Ph (4 <i>o</i> -MeOC ₆ H ₄ - (5 Me (1) OH) 60) 57 5) 81
4	(7) CO ₂ Bu- <i>t</i>	PhMgBr	12	Рh (16) ОН	u-t 68
	(1)	ArMgBr			2
5 6	(*)		12 22	Ar = Ph (2 $p-MeOC_6H_{4^-}$ (1)	t) 62 7) 57
7	(8)	PhMgBr	10		n ₂ 77
8	(1)	≫ − _{MgBr}	20	CONE (19)	t ₂ 59
9	(1)	━-MgB	kr 12	QH CONE 74:26 (21	t ₂ 77 ⁶ 0)
		RMgBr			2
10 11	(1)		21 21	R = Me (21 Et (22 QH	l) 89 2) 49
	$H_7C_3 \xrightarrow{O} (9)$	≥ RMgBr ^c			NEt ₂
12 13	Ç ₆ H ₁₃		24 21	R = Ph (2: Me (2: OH	3) 60 4) 78
14		MeMgBr	21	H ₁₃ C ₆ Me (25)	NEt ₂ 86
	COX	MeMgBr			ЮX
15 16	X = OEt (11) NEt ₂ (12)		10 21	X = OEt (26 NEt ₂ (27) 63) 76
17		MeMgBr	21		t ₂ 88
18		MeMgBr	21		it ₂ 85

^{*a*} Isolated yields. A single isomer was always produced, except for entry 9. ^{*b*} Same diastereoselectivity was observed before and after purification. Stereochemical assignment to the diastereoisomers has not been done. ^{*c*} PhMgBr (2.3 equiv) or MeMgBr (1.9 equiv) was used.

smoothly with a Grignard reagent to produce the desired products **28** and **29** in high yields (entries 17 and 18).

Synthetic versatility of Grignard reagents makes this transformation more attractive as illustrated in eq 3.¹⁰ Coupling of functionalized Grignard reagent **31** generated from (chloromethyl)iodobenzene (**30**)¹¹ and diene monoep-

⁽⁷⁾ Unsuitable copper catalysis for this purpose was expected from the results of ref 4. See, for example: Buchwald, S. L.; Bolm, C. Angew. Chem., Int. Ed 2009, 48, 5586–5587.

⁽⁸⁾ Other regio- and stereoisomers were not detected in a crude reaction mixture after careful analysis by ${}^{1}H$ NMR spectroscopy.

⁽⁹⁾ Nagumo, S.; Ono, M.; Kakimoto, Y.; Furukawa, T.; Hisano, T.; Mizukami, M.; Kawahara, N.; Akita, H. J. Org. Chem. **2002**, 67, 6618– 6622.

⁽¹⁰⁾ As cited in reference 3 this type of carbon-carbon bond formation is so far viable with only methyl- or ethylaluminum reagents.

⁽¹¹⁾ Delacroix, T.; Bérillon, L.; Cahiez, G.; Knochel, P. J. Org. Chem. 2000, 65, 8108–8110.

oxide 1 afforded alkoxide 32, which spontaneously underwent cyclization to yield the isochroman derivative 33. The somewhat low diastereoselectivity (92:8) of 33 may arise from vinylogous enolization of intermediate 32 at a higher temperature necessary for the cyclization step.

The present reaction should proceed via π -allyliron intermediate **35**^{12,13} generated from **34** with inversion of configuration of the allylic epoxide carbon (eq 4). Subsequent migration of the R group from iron to the allyl ligand with retention of configuration should have resulted in the exclusive production of **36** with the observed stereochemistry. To see the generality of this stereochemical outcome, we turned our attention to a similar substitution of an optically

active, functionalized allyl mesylate **37**. As can be seen from eq 5, the stereochemical integrity of **37** was partially lost during the reaction through **38** to give product **39** as a single regioisomer with a lower ee value.¹⁴ Thus, the highly selective overall inversion of stereochemistry in the reaction of the functionalized diene monoepoxide with a Grignard reagent is noteworthy from both synthetic and mechanistic points of view.

In conclusion, the iron-catalyzed substitution of γ , δ -epoxy- α , β -unsaturated esters and amides with Grignard reagents proceeded with inversion of configuration. As Grignard reagents are one of the most versatile organometallic reagents, this method is a novel entry to the practical preparation of stereodefined functionalized homoallyl alcohols.

Acknowledgment. This work was supported by a Grantin-Aid for Young Scientists (B) (20750071, to T.H.) and a Grant-in-Aid for Scientific Research (B) (21350027) from JSPS.

Supporting Information Available: Experimental procedures and physical properties of products. This material is available free of charge via the Internet at http://pubs.acs.org.

OL100022W

⁽¹²⁾ Iron-catalyzed allylic substitution with Grignard reagents has been reported. (a) Kauffmann, T. Angew. Chem., Int. Ed. Engl. 1996, 35, 386–403. (b) Yanagisawa, A.; Nomura, N.; Yamamoto, H. Synlett 1991, 513–514. (c) Urabe, H.; Inami, H.; Sato, F. J. Chem. Soc., Chem. Commun. 1993, 1595–1597. (d) Nakamura, M.; Matsuo, K.; Inoue, T.; Nakamura, E. Org. Lett. 2003, 5, 1373–1375. With functionalized (achiral) allyl bromide, see: (e) Fürstner, A.; Martin, R.; Krause, H.; Seidel, G.; Goddard, R.; Lehmann, C. W. J. Am. Chem. Soc. 2008, 130, 8773–8787. With alkynylepoxides, see: (f) Fürstner, A.; Máthage, A.; Marting, E.; Lepage, O. J. Am. Chem. Soc. 2006, 128, 9194–9204. With vinylcyclopropanes, see: (h) Sherry, B. D.; Fürstner, A. Chem. 2009, 7116–7118.

⁽¹³⁾ Regio- and stereochemical aspects of iron-catalyzed allylic substitution with soft nucleophiles such as malonates and amines have been disclosed. (a) Silverman, G. S.; Strickland, S.; Nicholas, K. M. Organometallics **1986**, 5, 2117–2124. (b) Xu, Y.; Zhou, B. J. Org. Chem. **1987**, 52, 974–977. (c) Zhou, B.; Xu, Y. J. Org. Chem. **1988**, 53, 4419–4422. (d) Plietker, B. Angew. Chem., Int. Ed. **2006**, 45, 1469–1473. (e) Plietker, B. Angew. Chem., Int. Ed. **2006**, 45, 6053–6056. (f) Åkermark, B.; Sjögren, M. P. T. Adv. Synth. Catal. **2007**, 349, 2641–2646. (g) Plietker, B.; Dieskau, A.; Möws, K.; Jatsch, A. Angew. Chem., Int. Ed. **2008**, 47, 198–201. For review, see: (h) Plietker, B.; Dieskau, A. Eur. J. Org. Chem. **2009**, 775– 787.

⁽¹⁴⁾ To the best of our knowledge, this is the first example disclosing the stereochemical course of iron-catalyzed allylic substitution at an optically active system with Grignard reagent, which is categorized as a hard nucleophile.